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1. INTRODUCTION

A single-determinant form for wave functions has been used extensively

in the quantum mechanics of many-electron systems.

In the usual Hartree-Fock method, single-determinant wave functions

are used with a restriction that two electrons with spins a and P are put

into the same space orbital. A single-determinant wave function with this

restriction is an eigenfunction of the total spin operator S2  . The Hartree-

-Fock method has proved to be very useful in the theory of atoms, molecules

and solids.

In the unrestricted Hartree-Fock method, single-determinant wave

functions without the above mentioned restriction are used. This allows us to

treat, in a compact form, the exchange polarization and the correlation of

electrons with antiparallel spins. However, the unrestricted Hartree-Fock

method has a disadvantage. Wave functions used in the method are in general

not eigenfunctions of the total spin but are linear combinations of eigenfunctions

which have different eigenvalues.

It is of some interest to see how much of each spin eigenfunction is

contained in the single -determinant wave function.

2. FORMULATION OF THE PROBLEM

Any antisymmetric wave function of an N-electron system can be written

in the following form,

S, = .'€- (w(r 1,r2 , " )E(01,02, N) (2.1)
where stands for the space and spin coordinates ri and a. respectively

1

of the i-th electron. 9- is the idempotent antisymmetrizing operator. By using

permutation operators P and their parities E p , the antisymmetrizing

operator A is expressed as

N! ppP (z-

The wave function cD is in general a linear combination of pl.re spin

state s:

Y= 5 iS,M (2.3)



where 0S,M is an eigenfunction of S2 and Sz with the eigenvalues S(S + 1)

and M respectively (th = 1).

This decomposition is of physical importance if the Hamiltonian does not

involve spin operators. An expectation value of a spin-free operator f can be

expressed as

(, ~
<f > M(2.4)

S,M

where

WS'M 0 7•,WSM=1) (2.5)

SM

and
(?ESM,f iIs'm)

(f sm = , , (Z.6)

when < SM (PS,M > is not zero. When the Hamiltonian of the system is spin-

-free, we have

E = E WSMESM (2.7)
S,M

This equation shows that at least one of the energy expectation values ESIM is

lower than E unless all ESIM are equal to E . By selecting from D a

suitable spin component 4S, M , we have a wave function which is not only a

spin eigenfunction but which has a lower energy expectation value.

The analysis is also useful in interpreting the function 0 , (Z. 1). This

is in some cases (e.g. a single Slater determinant) much easier to handle than

its components 0 SM * If we know the values of woSIM and < f >SIM I we

can better interpret the nature of the simple form (2. 1). One of the basic

problems here is to determine the weight cwS,IM

In the following we shall investigate a special case in which the spin

part 8 of the wave function (2. 1) is a simple product of spin functions r-i(oi)

which are either (cr*) or p(a.i) :

.8(01,C32,...,ON )=Y1 (01 )Y20O2 ) ... YN(O 0 N (2.8)
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The spin function e is an eigenfunction of 5. . If we denote the number of a

and P functions in (2.8) by N and N respectively, the eigenvalue of S z
(M) is expressed as

1 = (Na- NO) (2.9)

In order to evaluate wSIM I it is convenient to introduce the spin

operator 0SIM which projects out the component of the pure spin state:

{s2- S( S+ 1)} = 0
{SZ- M 5Os,M = 0, (z.0o)

F OSM 1
SM

We note that this operator works only on the spin part of a wave function. For

any wave function

Z= yCi Ti (J(r,1 2 , .,_IN ) Ei(Ol,O2,..,ON )i

0 SM (D is expressed as

OS, M 1 Zci Ti ( OsM 0i)

Since the wave function under consideration is an eigenfunction of SZ
with the eigenvalue M , we shall drop the subscript M in the following unless

it causes some ambiguity.

The weight w S for the wave function (D can be written as

WS Os 1,Os ?D) _( T , OsAT 6
Ws= ( , 1) (T8OT8>

F Ep(q pX 6(, Os P0 e)
P

E Eý T, P" ) 8, FPO>(. )
P

where P X and P a denote the corresponding permutations of the space and the

spin coordinates respectively. Similarly we obtain the expectation value of a

spin-free operator f
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(Os izof Os> <( , ( P8f 0s 4 T O)

if's s =o~ 'eoAIef s .(Os 1,OsID •> jGO, s,€TO

Yp E(p (4),f pXy) V (ePo G)e
P

_Ep (T, pXqT) (e,os pae) (2. 12)

P

We shall derive an explicit formula for < 0, OsP•0 > in the next section.

In sections 4 and 5, the weights ws derived from a single Slater determinant

are given, and the behaviour of the w S-values for large N is discussed.

3. CALCULATIONS OF < 8, OSPa' >

Because we assumed the form (2. 8) for the spin part 0 , for any permu-

tation P we can find a permutation Q(P) which brings 8 and Pr8 into the

following forms:

QT e = a(1) a(2)... a(n+M)P(n+M+1)... P3(2 n) fo , (3.1)

Q0P aE= a(1)... a(n+M-i)P(n+M-i+1)... p(n+M)x

x(z(n+M+1) "...a(n+M+i)p3(n+M+i+l)... p(2n)
(3.2)

=fi( 2n= N )

Here the integer i(P) is the number of a-functions in 0 which are changed

to P-functions in P a' . The number i(P) is uniquely determined by the

given permutation P .

Using the commutability of OS and Q , we obtain

(e, Os eP8) (Q Oe,Qs0 oPoe)

( 0 o 00i)= Csi (3.3)
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In order to calculate the value cSli I it is convenient to divide the

total number of electrons into four groups A, B, C and D . A, B, C and D

stand for the first n + M - i electrons, the second i electrons, the third

i electrons and the last n + M - i electrons, respectively;

A 1, Z, ... , n+M-i,

B n + M- i + 1, n + M - i + 2 ... , n + M

C n+M+ 1, n+M+ 2, ... , n+M+i ,

D n + M + i + 1, n + M + i + 2, ... , 2 n

For example when we write CD, this means the combined groups of C and

D , i.e. the last n - M electrons.

We introduce the symbol YK(S, m; ) for one element of an orthonormal

complete set of simultaneous spin eigenfunctions of 5 2 and S Z with the eigen-

values s(s + I) and m respectively. K denotes an electron system which can

be any of the groups defined above. ýi specifies one of the spin functions with

common s and m , to differentiate degenerate functions. We adopt the usual

convention for the relative phase of these functions 1);

(Sx± i SY ) YK(s, ; )=J(sm)(s±M+re )YK(s, m±1;) '(3.4)

As the element of the set which has the highest eigenvalue of S

(s = NK/2, NK is the number of electrons in the group K), we choose the

following function:

YK( NK/2, NK/2) c .'1.. a. (3.5)

We may drop ý± in this case since (3. 5) is the only function in the set with the

eigenvalues s = m = NK/Z . From (3.4) and (3.5), we obtain

YK(NK/ 2 , -NK/ 2 )=P P "3 . (3.6)

An orthonormal set of spin functions of the system ABCD can be obtained

by coupling YAB and Y CD in the following manner:

YAB3CD( S,m ; 4/ =YABCD(S'm : S ' S"tJ.' ýi"I# ABtin the

Y" D,)yAB(s'm. .. )s D(S,r,•')

x(sm',m s'r"I s',s s,m ). (3.7)
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Here (slms,'m" I s,s'. s,m) is the vector coupling coefficient 2).

(s' ,m', s~n', s',s;, m )(m'+÷m "- m')x

r(2s+1)(s'+ s".- s).(s'- m's)! ((s'- m" ).(s + -m)!. /2

V+s'- M' (s'+ m'+ v )!(ý s - m'- v)!

v V!(S'- M'-v)!(s- Mr-v )!(s'L s+ m'+ v)! (3.8)

Since

OS,M Y- YAEcD(S, M:0) (YABcD(S,M;t.), (3.9)

we obtain

Cs, i = Y- f0,YABcD(S,M: 4))(YABcD(S,M;i),fi). (3.10)

The functions f and fi are expressed as

f0 = YAB( n+M n+M ) Dn-M nM)

and

2 2 22

xC(2 -T) YD 2 2

Therefore, the terms of the right side of (3. 10) vanish except for the following

YABCD :

YABCD(S.M: n+M n-M )= ,YAB(In+I m')YCD(n-M moo
2 , 2 m" 2m. , 2. ,

n( n+M m, n M 1 n+ M n-M SN M
2 2 2 , 2

(3.13)
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Here

V(nl+Mm)i=y~yf -4 m')V(y rr~
A 2m mA 2 BT2

x(n+M - m, m ifl- +MI -i fl +M~)
2 -2' 2 '2 2

(3. 14)

and

YC D(m), \5~ m D(n-M iy

2' 2 ' 2' 2 '2

Using (3. 8), (3. 11), (3. 1Z), (3. 13), (3. 14) and (3. 15), we find

C~j- (fOYABDSIM n+M n -M )).ACD ,:n+N M___-
'O'BC~' 2 ' 2 )(AC(M,2 '2

(fn+M n-eM n-NI _n-.M n+ M n-M
2 , 2 2' 2 2 ,.2 , S, M~

x n+M-i n+M-i i i n+M-i i n+M n+M-2i),

~2 2 2 2 2, 2~ 2 2

n-+M n+NI -2 n -M n-M-2i 1:n.±M n-N SM)
2', 2 '2 2 2 '2

=-2,(n -M -i)! i' (--v (n+M-i+v )!(S- M+i-v)! (.6
(n=(2S!0+ (S-M- )(n-S-)

=(2+,)n -MI-i)!S S+M)%E(l )v I(S - M + V 2 -S1+0 (17
(S - NI)! v 'v! (S - MI + v - i)!(n -S -v)Y!(2S++) 3 i

It is convenient to use the expression (3. 16) in calculating the values C Si
for some special cases. For example,
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C S'0 (2S1) (n -M)!(n+M)Cs~ = 2s+(n+ S71 •.(n- S•)!

CM =(2M+1) i(n+M -i)!

C (n+M÷+1)!

(n +M )!(n-M )!Cn,i 
2 )(2n)!

4. APPLICATION TO A SINGLE-DETERMINANT WAVE FUNCTION

When a wave function 4D is a single-determinant wave function, the space

part '([ 1,2,"" ,N ) is a product of one-electron functions:

f(r1 ,jf 2 ; N = 1 1 ")! 2(Y2) NN (4.1)

We denote orbitals associated with a -spins by 01 Z' . n+M and

those with n-spins by P 1, 'Z .... , qhnM . Without changing the total wave

function 4 , we can transform the orbitals {o} and {•p} to {0'} and {(p')

so that the only overlap remaining is between the pairs oi' and pi' 3)

n+M

= -I =I,2,In+M,

n-Mp' =ZX p ,PZP = b ij '=1, 2,..;,n-M,

.. ",.(4.2z)

i' )=6ij )ki•- O

j' Ij ) f jIT j j

Using these transformed orbitals for the space part T , we find that

the inner product < T, Px"> vanishes except when P is a product of some
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interchanges of the pairs {i"' qgi') . When P interchanges the electrons of
t pairs {Ok,, CP'kl} ' {t'kZ' (Pjk} ,...P {O'kt, qp' kt) we see that

T , pXj) = X.klXk2" Xkt

EP )t (4.3)

i(P) t

It follows from (2. 11), (3.3) and (4.3) that

n-M kWOS Y-• (-1)kAk CS,k ,(4.4)

k=O

where Ak is defined by the coefficients of the polynomial

n-M n-M k k
TT (1 -Xkx) = (-1)kAkX (45)

k 1 k=0

For example,

A0  =I1

A1  =ZT Xk,
k

2 (F Xk) Nk =XlX2+Xi3 + XXhM
k k

+ X23 + . .+ Xn-M-1 Xn-M

An-M= 1X kk

k

In order to calculate (4. 4), it is convenient to introduce. the following

polynomial W(x):

n-M _n-M kk

W(x)= IT 1 -(1 -Xk)x 1= 2- (-1) Bk x . (4.6)
k I k=0
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By comparing (4. 5 and (4. 6), it is found that

k i n-M-)
Ak= (-1P) 47

0 (n-M -k k-j )!(47)

The weights w S of a single-determinant wave function are, therefore, expressed

as

n-M k 0 ,jk (n- M-)
Ws F= E ( (n-M - k) _k-j)! Bj CS,k

(S +M) n'SnM S-M+v V+j +k
(2S+1) z(S-M)!v--0 Ij0

S {(S -M+ v )!)2(n - M -j)!

S(n- S - v)!(2 S+ 1 +v)! v! (k - j)!(S-M+ v -k)1

=(2S+1)•• s+ - sM), {(-S P-+v) 2

(S-M!�V -O (2S+1+v)! v 1.Mv.
(4.8s)

This can be written as an integral,

s = (-I)sM2S + 1(S S MI).x - x)sM dxSM dx (4.9)

When W(x) is given, we can derive wS using the above equation (4. 9).

Since the first order density matrix completely determines the original

single -determinant wave function, it should also determine the weight

WS ' We derive an explicit expressioni for W(x), in terms of the first

order density matrix, w S can be derived from W(x) by using eq. (4. 9).

The first order density matrix of the wave function under consideration

has the following form:

p(• P,')= p÷([,')O•X(O) •(X ') + p_(I,'r')t()1('
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where
n+M

P + = F-+'

n-M

i=1

Since

,Pi', (1 -x)p.+ xpp j (4) = 6ij{1-(1 -Xi)x,

W(x) can be expressed as an expectation value of an n-M particle

operator K(x):

W ( x)= W, K(x) W-)

where

K (xl1,'2,...,I'n M:r' l'l,.," 'nM ) =

n-M= '(1 -X)p.(fi,i) + x p-p÷(ri,

and

It is seen that 4'K(O) is a projection operator,

4 K(O)= W-)(41J,

and K(O) K(x) K(x) • Therefore, we obtain an expression of W(x) in

terms of p+ and p_ only:

W(x) =(W' K(x)4W) =tr,4K(O) K(x) = trAK(x)



5. BEHAVIOUR OF wS FOR LARGE N

-We discuss the case when all Xk's are equal to X . Then

• = _ n- M
W(x) {1 (_- X)x) (5.1)

Putting (5. 1) into (4.9), we obtain

S-MI
- j SM(sM (1 X)"M{1-(1 -X)xjn'Sdx.ws (() (2S+1)_(n

(5.iZ)

The asymptotic form of (5.2) is derived in the appendix when S - M

is small compared with N2/3

S(2 S + 1 )(n -M )s -M ( -M)(
(1-X)(n-M+ 2M )s-5M+exp{ 2(n S-M-1)(S-M)-1-:7

2M+(1 -X) 2 (n-M)2(2M +01- X)(n -M)ý2S M I( - +)

__ X (S-M)(S -M +1) (5.3)
2M+(1 - X)(n-M)

The equation (5.3) may be regarded valid over all possible values of S , since

both left and right-hand sides of (5.3) decrease rapidly as S - M 'becomes

large compared with Nl/2.

5 a) Orthogonal case

Putting X = 0 in the expression (5.2), we obtain

)(O) = (n+M)!(n-M)! (5.4)

S(2S+ -(S)!(n+S+l)!
It is interesting to note that ws(O) is proportional to the number, fn, S of

linearly independent spin functions for given n (= N/2) and S

WS(O) = n ,S (55)

Z f n.S'5__ M
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The asymptotic, form of w8(0) is, from (5. 3),

.(OS()'~('2S + 1)(:'n- MI)s- xiS-M -1" _ l)(S_-M)_-
(n+M )S-M+ 2(nM) .

S 1 )(S- M+1)(S-M+2)} (5.6)
2(n+M)

For M= kn(O< k < 1), w.S can be approximated by a geometrical

sequence,

•(n-M)S'M 2k '1 - .\s-M

Ws (2 S+I)(n+M)S-M+ 2 1 k - k) (5.7)

It should be noted that (5.7) does not contain the number of electrons explicitly.

Therefore, for a fixed k , wS does not change much when N increases.

For M = 0

°S -(2S+l)exp S 2 +S+1(5.8)
n3 n

From (5. 8), the expectation values of S , SZ and S can be calculated as t)

2 2 S2S3  S2  =

<S>ZS Ws- 2-n-exp(---n-)dS = n!T/2

1-) The exact values are as follows,

S22n- 1~n)2

2

< S> = + Z sjne (2n)

<§ S> = n+ 1 -<>

1 2n 2(6n-5)n(n!)<S> (_n+

4 (2n+l1)!
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In figures 1 and 2, wS is plotted as a function of S and S/n

respectively for N = 10, 100 and 1000, using (5.8). We see from these

figures that when N increases, wS spreads towards bigger N • However,

for large N , appreciable weight wS is localized around the value Smax

.0. 5N • The second moment of the distribution around the average < S >

is

2 2<S>- <S> (1 -11)n 0.107 N

5 b) Non-orthogonal case

For M/ 0,

w s nM,,) -~M s( 1  S X)(n_ M)+IM,M,0 (5.9)

since the factor (2S + 1)(n - M)S'M/1 - X)(n - M + ZM/1 - X)S-M+' decreases

rapidly compared with the exponential part in (5. 3), which may therefore be

regarded-as 1 .

For M = 0

ws(nO'?k) (1-S+1nexp S+ +l -Xn
(__X)__ 1-X~

- ws {(l-X)n,OO } (. 0o)

It follows from (5. 9) and (5. 10) that the weight in the non-orthogonal case for N

electrons can be approximated by the weight for 2 {(1 - X)(n - M) + M} electrons

in the orthogonal case:

ws(n,M,X) - ws{(1-X)(n-M)+MM,0} (5.l)

When the overlap X increases, the distribution shrinks. This can be

seen from figures 3 and 4, where wS for some X values are plotted as a

function of S for M = 0 and M = 0.2 n respectively.
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APPENDIX

We define a function I by the integral,

_W fo•

Then the weight (5. 2) can be expressed as

WS (Dn = (2S_ 1 )(fl)!( ) - SM.S+M,n-S (1 _X) (A.2)

The maximum of the integrand in (A. 1) is given by one of the roots of

the following equation,

a ___ - 0. (A.3)
xo 1 -xo 1-zxo

Therefore,

Xo= (1 +z) a+ p+ zY-l{(l+z)a+p +zY}2-4az(a+rp+y) .(A. 4)

2z (a + 13 +y)

The order of x is the same as aI3 + Zr).

Expanding ( - x)p(l - zx)rexp -- in terms of x - x° , we obtain
x0

0

1--x (1 -x)?(1 -zx)Y =
a)

)23 OL(A. 5)
= {ao+ a 2(x-- X0+a 3(x-Xo) + .. 1: -- exp (- ax/Xo).SCa!

Here

a0 =(1 -xO)P(1-zxO)Yexp a

aa2 = R(1 Xo)2 (A. 6)

- 0 z(1 zxo)2

and

ak ao 0 (a(71] Xo0 )(A.7)
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Integrating (A. 5) over the range (x 0, x = oo) , we arrive at an

asymptotic expansion

I aobo+a 2 b2- (A.8)

where

bk =- fraD- -.xo exp(-ax/xo)dx (A.9)

bo =(xo/c X , }

b 2 = b0 x2(a+2)/a 2  (A. 10)

bk ~ ~ bo . k+ 11

b k boo X 0 ). (A. 11)

From (A. 5), (A. 7) and (A. i), we find the order of magnitude of a kbk

0 (V )k even

ak bk/ao b 0  k (A. 12)

Remembering that the order of x is the same as that of IaXP + zy) and

using (A. IZ), we can take the first two terms in (A. 8) in order to calculate

log WS with the accuracy of order (P + ZT) . Then we obtain

2a2 1 x0) (1 ZXo)2l

(A. 13)

(10 x
x ( )1X ( 1 -Z X0 )yexp a.

The expression (A. 13) is substituted into (A. 2), and after some manipulation,

we obtain (5.3).
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